Restoration work

The problem with starting an EV conversion on an MOT failure is that you also have to address all the reasons it failed in the first place. And with a 174,000 mile car, there can be a few of them. Obviously there are no issues with the engine or emissions now. But somewhat predictably, the more I have dug around in this car, the more issues I have found.

Front corners

I noticed a few weeks ago that one of the front suspension springs was broken, so knew that would need replacing before we put the car in for a test. When I took the shock absorber off I found this was also in a pretty rotten state, with the bump stop completely mashed and split. So I figured I probably ought to replace this as well. If you’re going to do one corner, you really should do the other, and suddenly you’re looking at quite a bit of money. If you go OEM that is…

Trawling around for replacements though I noticed some absurdly cheap sets of coilovers to fit this vehicle. And when I say absurdly cheap, I mean I put in an offer of £195 – new, including shipping – and had it accepted. Now are these coilovers going to be any good? Absolutely not. Eventually I will have to replace them with some decent ones. But, for less than the price of doing both front shocks and springs, I get shink new components all round with – critically – adjustable ride height so that I can balance out the weight differences from the conversion.

While I was at the corner I decided I really ought to strip off and clean up the incredibly crusty front knuckles and calipers. The bolts all came off surprisingly easily with a short breaker bar, but splitting the taper at the bottom was another matter. Again, somewhat predictably, I managed to split the boot surrounding the ball joint on the lower suspension arm. I was a bit cross about this until I realised that both suspension arms were so rusty that they too were probably going to be an MOT failure at some point. Out came the credit card again for some budget parts. Incredibly, droplinks, bushes, and full suspension arms for both sides were just £75.

That only leaves the knuckle, caliper and brakes as the original components. If I had more money I would probably replace all of the above. The knuckles are very rusty, albeit mostly just on the surface. But the tinware around them is totally shot. And the flexi pipes are completely seized on the calipers. Not sure how I am going to get those off for a proper clean-up yet.

Finally, while I’m taking the front end to pieces, I noticed some fairly serious corrosion on the X-frame brace. I took this off and hit it with the wire wheel and it is pretty bad: great big holes. It’s not distorted though, and between the holes there is some solid metal. I’m going to have a go at welding this back up once the rust I can’t get to has been treated.

I picked up some Hammerite today so plan for this weekend is to remote the remaining suspension and brake components (if I can), give everything a thorough clean and a coat of paint ready for refitting. Will need a new wire wheel for this though: wore mine down to the metal cleaning up the brake rotors and the X-frame.

Battery Box

Meanwhile in the evenings I’ve been doing a lot more planning of the battery box. The washing machine case sadly won’t provide all the steel sheet I need. But its top and bottom frames will give me a great starting point. Plan is to cut all the way around the frame just below the door, giving me about a 30cm tall box. I’ll then drill out the spot welds from the other end of the frame and weld that frame into the top for support.

Inside this box will fit two rails. I have some thick rectangular steel bar, about 14mmx8mm that will work well for this. I will drill and tap M6 holes into this bar to hold threaded rods that will rise up through the pairs of holes at the end of each of the battery modules. This will allow me to stack them up on top of each other with some space in between.

Cooling is an interesting question. I had thought I would just go with air cooling at first, but this opens up the possibility (perhaps likelihood) of moisture getting into the battery box: not ideal. Shall have to mock it up and keep an eye on tempratures.

Wiring Loom

Final part of this update: I’ve been continuing with the wiring loom. Getting rid of most of the old loom was the right plan. The new loom is actually relatively simple by comparison with all the sensors the old ICE required. Mostly just power and CANbus flowing around. I plan to daisychain the CANbus connections: car (ABS/dash), to VCU, to inverter, to charger (part of inverter but has separate CANbus interface), to high voltage junction box, to battery box. I’ve decided to handle any step down to 5V inside each component, so that I’m only routing 12V power. That should reduce the chance of stupid mistakes and make wiring easier.

Where it gets a bit more involved is routing switching and control for the various pumps – water, oil, vacuum, power steering. Will handle that once they’re all in the car though.

Z3 cleared engine bay
BMW Z3 nearside nearside wheelarch
BMW Z3 X-Frame
Z3 X-frame close-up
BMW Z3 front knuckle

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.